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In its simplest form, linkage analysis consists of counting
recombinants and nonrecombinants, estimating the re-
combination fraction, and testing whether this fraction
is significantly ! . By means of a general-likelihood for-1
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mulation, this concept was extended, for the study of
Mendelian diseases, to situations in which the number
of recombinants cannot be counted directly, with allow-
ance both for incompletely known genotypes—whether
due to dominance, incomplete penetrance, or pheno-
copies—and for heterogeneity in the recombination frac-
tion—whether due to the sex of the transmitting parent
or to different loci controlling the appearance of disease.
Logarithms to base 10 of the likelihood ratio (LODs),
comparing the maximum likelihood to the likelihood
when the recombination fraction is , became the basis1
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on which the evidence for linkage was judged. If the
likelihood was maximized over only a single recombi-
nation fraction, a “LOD score” of 3 was taken to be
significant. This corresponds to a P value (empirical type
I error probability) of !10�3—and, in large samples (as
the number of informative meioses becomes large), to a
P value of ∼10�-4. Very approximately, using this “LOD
score of 3” criterion would ensure, in most cases, that
only 5% of declared linkages would be false. To account
for maximization of the likelihood over more than one
unknown parameter—for example, the two sex-specific
recombination fractions or the recombination fraction
and additional parameters such as penetrances—the crit-
ical value of the LOD was adjusted upward, to ensure
that the large-sample P value remained the same, with
the result that the latter was the actual currency being
used—the exchange rate with LODs fluctuating accord-
ing to circumstance. These methods of linkage analysis
came to be known as “LOD score” methods and, more
recently, have been called “parametric.” I prefer to call
these methods “model based,” rather than by “LOD
score” or “parametric,” since the latter are terms that
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are equally applicable to many of the other methods of
linkage analysis, which are described briefly below. Of
course, every statistical test must be based on a proba-
bility model, so I am using the term “model based” to
indicate that details of the trait’s mode of inheritance
are being modeled. Typically, particular values of the
allele frequencies and penetrance functions are specified,
and we can assume, as is true for simple Mendelian
traits, that in any one family there is segregation at only
a single locus.

In the case of complex traits, it is impossible to model
with any certainty all the causes of familial aggregation.
Starting with Penrose (1935), many methods of linkage
analysis have been developed that do not require the
trait to be modeled in such detail, and recently these
have been termed “allele sharing” methods (Lander and
Schork 1994) and “parametric linkage analysis” (Krug-
lyak et al. 1996; Morton 1998). Most of these methods
involve definite parameters that take on different values
according to whether there is linkage, and so I prefer to
call them “model free” rather than “nonparametric”
(although, as we shall see, they also can involve a certain
amount of genetic modeling). These methods are all
based on little more than the premise that relatives who
are similar with respect to the phenotype of interest will
be similar at a marker locus, sharing identical marker
alleles, only if a locus underlying the phenotype is linked
to the marker. The more powerful of these methods are
based on knowing or estimating the sharing of marker
alleles that are identical by descent (IBD)—that is, that
are direct copies of the same ancestral alleles. If, for some
relatives, IBD sharing cannot be determined unequivo-
cally on the basis of the data available, the methods may
either ignore the data on those relatives, base tests di-
rectly on marker identity in state, or estimate IBD shar-
ing probabilistically, using population marker-allele fre-
quencies to do so. All these methods aim, with varying
degrees of success, to provide valid tests of linkage, with-
out the need to specify a detailed mode of inheritance
for the phenotype of interest, and so it is not necessary
to specify corresponding allele frequencies and pene-
trances. In large samples (in this case, as the number of
independent sets of relatives becomes large), the type I
error probability should be controlled properly.
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The most common of the model-free methods use full
sibs, who at any one locus can share 0, 1, or 2 alleles
IBD. The three corresponding sharing probabilities,
which sum to unity, are the parameters of interest. In a
randomly mating population the proportions of sib pairs
sharing 0, 1, or 2 marker alleles IBD at any locus are
expected to be , , and , respectively, and the mean1 1 1

4 2 4

proportion of alleles that they share IBD (i.e., the pro-
portion of sib pairs sharing two alleles IBD plus half the
proportion sharing one allele IBD) is expected to be .1

2

If the marker is linked to a locus underlying a trait of
interest, then sibs similar in phenotype will tend to share
1 of their marker alleles IBD, whereas sibs who are1

2

dissimilar will tend to share ! of their marker alleles1
2

IBD. If we are investigating a quantitative trait, we can
test whether dissimilarity with respect to the quantitative
trait—measured, for example, as the squared difference
between the sibs’ phenotypic values—is negatively cor-
related with the proportion of marker alleles shared IBD.
A binary-disease outcome can be considered as a special
case of a quantitative trait, by giving, without loss of
generality, the value 1 to affected sibs and 0 to unaffected
sibs. Then, testing for such a correlation is identical to
testing whether the mean proportion of alleles shared is
larger for similar (concordant) sibs than for dissimilar
(discordant) sibs. Alternately, if similar and dissimilar
sib pairs are not both available in the sample, we can
test whether the mean proportion of alleles shared IBD
is 1 for similar pairs, or ! for dissimilar pairs. This1 1

2 2

“mean” test is the most powerful test of linkage if the
gene effect on the phenotype is additive—that is, the
heterozygote mean phenotype is halfway between the
two corresponding homozygous mean phenotypes. In
the case of a binary disease, we can consider the prob-
ability of being affected as being the phenotype. The
gene effect is then additive either if (a) the penetrance
of the heterozygote is halfway between the penetrances
of the two homozygotes or (b) the homozygous genotype
predisposing to disease is nonexistent. In either case, one
parameter is estimated: either the difference between the
mean proportions for similar and dissimilar sibs, if both
types of sib pairs are being studied, or the mean pro-
portion of marker alleles shared IBD, if only similar or
dissimilar sib pairs are being studied. Because only one
parameter is being estimated, we have the correspon-
dence noted above—between a LOD score of 3 and a
P value (in large samples) of ∼10�4. The same is true if
the “proportion” test is used—that is, if we base our
test on whether the proportion of sib pairs who share
2 alleles IBD is increased in sibs of similar phenotype
and/or decreased in sibs of dissimilar phenotype, which
can be a more powerful test of linkage when the alleles
act nonadditively.

Affected sib pairs are often the only sibs studied, be-
cause they usually afford more power; but, if parental

marker information is not available, then any test that
does not compare the two types of sib pairs—similar
and dissimilar—depends strongly, for its validity, on ac-
curate knowledge of the marker-allele frequencies. A
common test that is used to analyze affected-sibling data
simultaneously tests whether all three IBD proportions
deviate from the expected values— , , and —in the1 1 1

4 2 4

expected direction if there is linkage and leads to a
“maximum LOD score.” In this case, because there is a
(constrained) maximization over more than one param-
eter, it is no longer true that a LOD score of 3, even in
very large samples, corresponds to a P value of 10�4;
and the threshold for a correspondingly “significant”
LOD score is necessarily larger.

Another type of linkage analysis, which recently has
been developed (Amos 1994) for quantitative pheno-
types, is referred to as the “variance component”
method. In this method we model the variance of the
phenotype by decomposing it into (a) components due
to linkage to individual marker locations and (b) residual
polygenic and environmental components. Thus, instead
of specifying the allele frequencies and penetrances for
a trait locus, we model the familial covariances that it
causes (regardless of how many alleles there are), in
terms of a maximum of two parameters: an additive
genetic-variance component and a dominant genetic-
variance component. The latter is a zero component for
all pairs of unilineal relatives—and, as a first approxi-
mation, may be assumed to be zero for other pairs of
relatives as well. The variance component(s) for each
trait locus, as well as the residual variance components,
are estimated from the data at each chromosomal lo-
cation, rather than being prespecified. The variance-
component approach usually assumes a multivariate
normal distribution for the data, which is a strong as-
sumption: in addition to the usual assumption of a sym-
metric bell-shaped curve for the marginal distribution,
it assumes that the joint distribution of the data for a
family depends only on means, variances, and covari-
ances. The variance-component approach can also be
based on a “quasi-likelihood” method that does not
make such a strong assumption, requiring only large
samples for P values to be valid. The term “semipara-
metric” has been used in connection with this quasi-
likelihood method, which allows for the presence of non-
normality—such as “skewness”—without the necessity
to include further parameters in the likelihood in order
to describe it.

Whatever particular method of linkage analysis is
used—and regardless of the name given to it—the most
important aspects to consider are validity, power, and
robustness. A test is valid if the reported type I error
rate, or P value, is correct. Power refers to the ability
of the test to detect what is being sought—in our case,
linkage. A test that correctly uses more of the infor-
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mation that is in the data will be more powerful than
one that ignores part of the data. On the other hand, a
test that misuses part of the data will be less power-
ful—and, possibly, invalid. Robustness refers to a test
having good properties, in terms of being valid and pow-
erful, even though the assumptions underlying the test
are not met. In large samples, simple model-based meth-
ods are extremely robust with respect to validity; under
the null hypothesis of no linkage, the analysis makes no
assumptions beyond those required for all linkage anal-
yses—namely, (i) that all relationships among pedigree
members are known without error, (ii) that marker-allele
frequencies, which may or may not be required for anal-
ysis, are known without error, and, usually, (iii) that all
marker-typing data are correct. A model-based analysis
that uses a correct model always will be at least as pow-
erful as any model-free analysis. However, the power of
model-based analyses to detect linkage in samples of
reasonable size can depend critically on how well the
mode of inheritance specified for the trait approximates
its true mode of inheritance (for discussion, see Jarvik
1998 [in this issue]). The fact that model-based analyses
do not provide consistent estimates of the recombination
fraction is of little importance when a global search of
the whole genome is performed by efficient multipoint
methods. The main disadvantages of model-based meth-
ods are as follows: (1) if multiple mode-of-inheritance
models are investigated in the linkage analysis, in order
not to miss a linkage because of model misspecification,
then a more stringent criterion is necessary to detect
linkage at a given significance level; and (2) it is com-
putationally difficult to extend model-based methods to
multilocus inheritance for the trait of interest. Model-
free methods also tend to be robust with respect to va-
lidity, but these methods have the following advantages:
(1) they require fewer tests, and (2) they can be extended
more simply to allow for the simultaneous analysis of
multiple trait loci. Each particular model-free method
will have most power in a particular situation, but this
does not imply that a set of underlying assumptions is
necessary if the test is to be valid. The variance-com-
ponent methods offer a parsimonious parametrization
for multilocus models, and this tends to make them gen-
erally powerful. However, variance-component models
that assume multivariate normality may not be validity
robust, even for large samples.

For all methods of linkage analysis, accuracy of P
values is of special concern. We can argue that P values
are inappropriate as measures of evidence (Goodman
1993; Vieland and Hodge 1998). A common argument
notes that, regardless of whether we find r recombinants
when we look at n informative meioses or have looked
at n informative meioses in order to find r recombinants,
the evidence is the same—but that, if we use the strict
definition of P values, then the two P values are different

(Berger and Berry 1988). However, the latter case is one
of sequential sampling (i.e., we sample until we have
found r recombinants), so that the sample size n is a
random variable—a situation for which P values were
never intended. For all their shortcomings, P values are
probably the best measures that we have of the evidence
for linkage in the analysis of complex diseases (Witte et
al. 1996), especially when more than one parame-
ter is estimated. Likelihood ratios—or, equivalently,
LODs—are not comparable when different numbers of
parameters are estimated. There is, of course, no magic
P value below which linkage has been proved and above
which it has yet to be proved. P values are, at best, only
guides, because scientific inference is necessarily subjec-
tive (Malécot 1947). Nevertheless, they should be de-
termined as accurately as possible, since the estimated
power of a study is meaningless unless the type I error
rate is correctly controlled. For many methods of linkage
analysis, P values obtained on the basis of theoretical
large-sample considerations are reasonably accurate if
they are ∼.05 but are quite unreliable, for typical sample
sizes, if they are much smaller. The only sure way to
determine an accurate P value is by considering the sam-
pling distribution of the statistic being used, for the sam-
ple size studied, when there is no linkage, either theo-
retically or by a Monte Carlo simulation procedure. In
a study in which only affected persons have been typed
for markers, this poses serious statistical difficulties. In
any case, the smaller the P value, the larger the number
of Monte Carlo replicates required for accurate P-value
estimation.

Finally, there are differences of opinion about just
which criterion should be used as a cutoff when we
intend to report that “significant” linkage has been
found (Lander and Kruglyak 1995; Witte et al. 1996;
Morton 1998). If a whole-genome scan has been per-
formed, then it makes sense to try to control the overall
genomewide type I error rate, with allowance for the
fact that multipoint linkage analysis can be used to test
for linkage at all points between markers, as well as at
the marker locations themselves. If we perform a test
for linkage at each of k points along the genome, and
if these k tests are independent, then statistical theory
indicates that it is appropriate, to a close approximation,
to allow for this “multiple testing” by use of a signifi-
cance level k times as small. This would suggest that, to
allow for an infinite number of points, an infinitesimally
small significance level would be required. However, the
tests along the length of the chromosome are not in-
dependent, and the theoretical arguments that have been
made to find which single-location P value corresponds
to a genomewide P value of .05 (Lander and Kruglyak
1995) are based on the assumption of a dependency
structure that arises when there is no linkage interfer-
ence; that is, they ignore the fact that crossing-over is
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inhibited near points where crossovers have already oc-
curred. This probably explains why the single-location
P value that has been recommended on the basis of those
considerations is more stringent than appears to be re-
quired in practice (Sawcer et al. 1997). It also should be
noted that multipoint linkage analysis is typically per-
formed on the assumption that there is no linkage in-
terference—an assumption that may be problematic
when markers are spaced far apart—and on the as-
sumption that the intermarker distances are known
without error. Despite these difficulties, it is probably
best to report the most accurate single-location P values
that we can, which would then be guides for future
research.
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Malécot G (1947) Les critères statistiques et la subjectivité de
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